Cardinal Interpolation with Gaussian Kernels
نویسندگان
چکیده
منابع مشابه
Presentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملRobust Cardinal Interpolation
A new method for modeling functions that intersect given points is developed and demonstrated. This method yields a generally non-Gaussian probability density of y given x that has properties which are often desired in practice. It is shown that this density can have a smoother mean function and a variance which is never larger than that of a classic Gaussian process density.
متن کاملFast Cardinal Interpolation
A computationally fast and optimally smooth method for generating a probability density of y given x that models given data points is described and illustrated. This method interpolates in that the mean function intersects the points and the variance function is zero at the points. It is fast and optimal in that it is produced by the smallest number of maximally-smooth Gaussian radial interpola...
متن کاملPresentation of K Nearest Neighbor Gaussian Interpolation and comparing it with Fuzzy Interpolation in Speech Recognition
Hidden Markov Model is a popular statisical method that is used in continious and discrete speech recognition. The probability density function of observation vectors in each state is estimated with discrete density or continious density modeling. The performance (in correct word recognition rate) of continious density is higher than discrete density HMM, but its computation complexity is very ...
متن کاملCardinal interpolation with polysplines on annuli
Cardinal polysplines of order p on annuli are functions in C2p−2 (Rn \ {0}) which are piecewise polyharmonic of order p such that ∆p−1S may have discontinuities on spheres in Rn, centered at the origin and having radii of the form ej , j ∈ Z. The main result is an interpolation theorem for cardinal polysplines where the data are given by sufficiently smooth functions on the spheres of radius ej...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fourier Analysis and Applications
سال: 2011
ISSN: 1069-5869,1531-5851
DOI: 10.1007/s00041-011-9185-2